MOLECULAR DOCKING STUDY OF THE MAJOR COMPOUNDS FROM GARCINIA ATROVIRIDIS ON HUMAN SGLT-2 PROTEIN TRANSPORT USING STRUCTURE-BASED DRUG DESIGN METHOD

Authors

  • ASEP KUSWANDI Physiology Division, Department of Biomedical Science, Faculty of Medicine, Universitas Padjadjaran, Jatinangor 45363, Indonesia
  • AGUS RUSDIN Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor 45363, Indonesia
  • VITA M. TARAWAN Physiology Division, Department of Biomedical Science, Faculty of Medicine, Universitas Padjadjaran, Jatinangor 45363, Indonesia
  • HANNA GOENAWAN Physiology Division, Department of Biomedical Science, Faculty of Medicine, Universitas Padjadjaran, Jatinangor 45363, Indonesia
  • RONNY LESMANA Physiology Division, Department of Biomedical Science, Faculty of Medicine, Universitas Padjadjaran, Jatinangor 45363, Indonesia
  • MUCHTARIDI MUCHTARIDI Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor 45363, Indonesia

DOI:

https://doi.org/10.22159/ijap.2022v14i4.44390

Keywords:

Garcinia atroviridis, SGLT-2, Molecular Docking, Pharmacophore

Abstract

Objective: The objective of this work was to study the molecular interactions of phytochemicals in Garcinia atroviridis with SGLT-2 protein transport.

Methods:  Molecular docking simulation using Autodock 4.2 was performed to explore the binding affinity of phytochemicals in Garcinia atroviridis against SGLT-2 protein transport. The structure-based pharmacophore model was derived using LigandScout 4.4 Advanced to investigate the important chemical interactions of the ligands and protein target. The evaluation was conducted based on the free energy binding and visualization in silico.

Results: From this study, Myricetin is the most effective compound having similarity of interaction with the amino acid residue, 4 of 5 are hydrogen bond interactions between the amino acid; HIS80, ASN75, TRP291, and LYS321 amino acid interacted with the oxygen as the proton acceptor from benzenes of the Myricetin structure, in addition, Myricetin also has the lower binding energy and inhibition constant (-9.54 kcal/mol and 101.93 nM, respectively) as compared to other compounds.

Conclusion: Hence, Myricetin could become the potential compound as an antidiabetic agent in the future with good activity and lower side effects.

Downloads

Download data is not yet available.

References

American Diabetes A. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2009 Mar 24;32(Suppl 1):S62-S7. doi: 10.2337/dc09-S062. PubMed PMID: 19118289.

Sone H. Diabetes Mellitus. In: Vasan RS, Sawyer DB, editors. Encyclopedia of Cardiovascular Research and Medicine. Oxford: Elsevier; 2018. p. 9-16.

Wilcox G. Insulin and insulin resistance. The Clin Biochem Rev. 2005 May 21;26(2):19-39. PubMed PMID: 16278749.

Thrasher J. Pharmacologic Management of Type 2 Diabetes Mellitus: Available Therapies. Am J Cardiol. 2017 Jul 1;120(1s):S4-s16. doi: 10.1016/j.amjcard.2017.05.009. PubMed PMID: 28606343.

Bisht R. Sodium-Glucose Linked Cotransporter 2 Inhibitor: A New Horizon in The Treatment of Type-2 Diabetes. Asian J Pharmaceu Clin Res. 2021 Jul 03;14(3):45-8. doi: 10.22159/ajpcr.2021.v14i3.39667.

Chinsembu KC. Diabetes mellitus and nature’s pharmacy of putative antidiabetic plants. Journal of Herbal Medicine. 2019 Mar 01;15:100230. doi: https://doi.org/10.1016/j.hermed.2018.09.001.

Uppal S, Italiya KS, Chitkara D, Mittal A. Nanoparticulate-based drug delivery systems for small molecule anti-diabetic drugs: An emerging paradigm for effective therapy. Acta Biomater. 2018 Nov 01;81:20-42. doi: 10.1016/j.actbio.2018.09.049. PubMed PMID: 30268916.

Han H-S, Kang G, Kim JS, Choi BH, Koo S-H. Regulation of glucose metabolism from a liver-centric perspective. Experimental & Molecular Medicine. 2016 Mar 01;48(3):e218-e. doi: 10.1038/emm.2015.122.

Gupta M, Sharma R, Kumar A. Docking techniques in pharmacology: How much promising? Comput Biol Chem. 2018 Oct 03;76:210-7. doi: 10.1016/j.compbiolchem.2018.06.005. PubMed PMID: 30067954.

Perozzo R, Kuo M, Sidhu A, Valiyaveettil JT, Bittman R, Jacobs WR, Jr., et al. Structural elucidation of the specificity of the antibacterial agent triclosan for malarial enoyl acyl carrier protein reductase. J Biol Chem. 2002 Apr 12;277(15):13106-14. doi: 10.1074/jbc.M112000200. PubMed PMID: 11792710.

Asojo OA, Gulnik SV, Afonina E, Yu B, Ellman JA, Haque TS, et al. Novel uncomplexed and complexed structures of plasmepsin II, an aspartic protease from Plasmodium falciparum. J Mol Biol. 2003 Mar 14;327(1):173-81. doi: 10.1016/s0022-2836(03)00036-6. PubMed PMID: 12614616.

Morris GM, Huey R, Olson AJ. Using AutoDock for ligand-receptor docking. Curr Protoc Bioinformatics. 2008 Dec 17;Chapter 8:Unit 8.14. doi: 10.1002/0471250953.bi0814s24. PubMed PMID: 19085980.

Parthasarathy S, Eaazhisai K, Balaram H, Balaram P, Murthy MR. Structure of Plasmodium falciparum triose-phosphate isomerase-2-phosphoglycerate complex at 1.1-A resolution. J Biol Chem. 2003 Dec 26;278(52):52461-70. doi: 10.1074/jbc.M308525200. PubMed PMID: 14563846.

Langer T, Hoffmann RD. Pharmacophore modelling: applications in drug discovery. Expert Opin Drug Discov. 2006 Aug 17;1(3):261-7. doi: 10.1517/17460441.1.3.261. PubMed PMID: 23495846.

Herat LY, Matthews J, Azzam O, Schlaich MP, Matthews VB. Targeting Features of the Metabolic Syndrome Through Sympatholytic Effects of SGLT2 Inhibition. Curr Hypertens Rep. 2022 Mar;24(3):67-74. doi: 10.1007/s11906-022-01170-z. PubMed PMID: 35235172.

Shao C, Westbrook JD, Lu C, Bhikadiya C, Peisach E, Young JY, et al. Simplified quality assessment for small-molecule ligands in the Protein Data Bank. Structure. 2022 Feb 3;30(2):252-62.e4. doi: 10.1016/j.str.2021.10.003. PubMed PMID: 35026162; PubMed Central PMCID: PMC8849442.

Niu Y, Liu R, Guan C, Zhang Y, Chen Z, Hoerer S, et al. Structural basis of inhibition of the human SGLT2-MAP17 glucose transporter. Nature. 2022 Jan 21;601(7892):280-4. doi: 10.1038/s41586-021-04212-9. PubMed PMID: 34880493.

Chadeve A. A Review on Pharmacology and Therapeutic Effects of Empagliflozin in Patients with Type 2 Diabetes Mellitus. Asian J Pharmaceu Clin Res. 2020 Jul 05;13(5). doi: 10.22159/ajpcr.2020.v13i5.36838.

Ashoush N. Review on pharmacokinetics of Empagliflozin, An Inhibitor of The Sodium Glucose Co-Transporter-2 (SGLT-2). Asian J Pharmaceu Clin Res. 2017 Jan 07;10(7):50-6. doi: 10.22159/ajpcr.2017.v10i7.18067.

Bissantz C, Kuhn B, Stahl M. A medicinal chemist's guide to molecular interactions. J Med Chem. 2010 Jul 22;53(14):5061-84. doi: 10.1021/jm100112j. PubMed PMID: 20345171; PubMed Central PMCID: PMC2905122.

Djajadisastra J, Purnama HD, Yanuar A. In Silico Binding Interaction Study of Mefenamic Acid and Piroxicam on Human Albumin. Inter J Appl Pharmaceu. 2017 Oct 30;9(0):102-6. doi: 10.22159/ijap.2017.v9s1.56_62.

Nair AS, Bagchi D, Lehmann TE, Nair S. Chapter 16 - Renal Sodium-Glucose Transporter-2 Inhibitors as Antidiabetic Agents. In: Bagchi D, Nair S, editors. Nutritional and Therapeutic Interventions for Diabetes and Metabolic Syndrome (Second Edition): Academic Press; 2018. p. 207-14.

Cournia Z, Allen B, Sherman W. Relative Binding Free Energy Calculations in Drug Discovery: Recent Advances and Practical Considerations. J Chem Info Model. 2017 Dec 26;57(12):2911-37. doi: 10.1021/acs.jcim.7b00564.

Luo H, Fokoue-Nkoutche A, Singh N, Yang L, Hu J, Zhang P. Molecular docking for prediction and interpretation of adverse drug reactions. Combin Chem High Through Screen. 2018;21(5):314-22.

Luo H, Fokoue-Nkoutche A, Singh N, Yang L, Hu J, Zhang P. Molecular Docking for Prediction and Interpretation of Adverse Drug Reactions. Comb Chem High Throughput Screen. 2018 May 25;21(5):314-22. doi: 10.2174/1386207321666180524110013. PubMed PMID: 29792141.

Muchtaridi M, Syahidah HN, Subarnas A, Yusuf M, Bryant SD, Langer T. Molecular Docking and 3D-Pharmacophore Modeling to Study the Interactions of Chalcone Derivatives with Estrogen Receptor Alpha. Pharmaceuticals (Basel). 2017 Oct 16;10(4). doi: 10.3390/ph10040081. PubMed PMID: 29035298; PubMed Central PMCID: PMC5748638.

Bommu UD, Konidala KK, Pabbaraju N, Yeguvapalli S. Ligand-based virtual screening, molecular docking, QSAR and pharmacophore analysis of quercetin-associated potential novel analogs against epidermal growth factor receptor. J Recept Signal Transduct Res. 2017 Dec 03;37(6):600-10. doi: 10.1080/10799893.2017.1377237. PubMed PMID: 28958213.

C S, S DK, Ragunathan V, Tiwari P, A S, P BD. Molecular docking, validation, dynamics simulations, and pharmacokinetic prediction of natural compounds against the SARS-CoV-2 main-protease. Journal of biomolecular structure & dynamics. 2022 Sep 08;40(2):585-611. doi: 10.1080/07391102.2020.1815584. PubMed PMID: 32897178.

Lv P-C, Li HQ, Xue JY, Shi L, Zhu HL. Synthesis and biological evaluation of novel luteolin derivatives as antibacterial agents. Eur J Med Chem. 2009 Feb 25;44(2):908-14. doi: 10.1016/j.ejmech.2008.01.013. PubMed PMID: 18313801.

Mladenović M, Matić S, Stanić S, Solujić S, Mihailović V, Stanković N, et al. Combining molecular docking and 3-D pharmacophore generation to enclose the in vivo antigenotoxic activity of naturally occurring aromatic compounds: Myricetin, quercetin, rutin, and rosmarinic acid. Biochemical Pharmacology. 2013 Nov 01;86(9):1376-96. doi: https://doi.org/10.1016/j.bcp.2013.08.018.

Ravichandran S, Singh N, Donnelly D, Migliore M, Johnson P, Fishwick C, et al. Pharmacophore model of the quercetin binding site of the SIRT6 protein. J Mol Graph Model. 2014;49:38-46. doi: 10.1016/j.jmgm.2014.01.004. PubMed PMID: 24491483.

Takasawa R, Tao A, Saeki K, Shionozaki N, Tanaka R, Uchiro H, et al. Discovery of a new type inhibitor of human glyoxalase I by myricetin-based 4-point pharmacophore. Bioorg Med Chem Lett. 2011 Jul 15;21(14):4337-42. doi: 10.1016/j.bmcl.2011.05.046. PubMed PMID: 21669529.

Seeliger D, de Groot BL. Ligand docking and binding site analysis with PyMOL and Autodock/Vina. J Comput Aided Mol Des. 2010 May 20;24(5):417-22. doi: 10.1007/s10822-010-9352-6. PubMed PMID: 20401516; PubMed Central PMCID: PMC2881210.

Shityakov S, Förster C. In silico structure-based screening of versatile P-glycoprotein inhibitors using polynomial empirical scoring functions. Adv Appl Bioinform Chem. 2014 Jan 17;7:1-9. doi: 10.2147/AABC.S56046. PubMed PMID: 24711707.

Morozov AV, Kortemme T. Potential functions for hydrogen bonds in protein structure prediction and design. Adv Protein Chem. 2005 Apr 04;72:1-38. doi: 10.1016/s0065-3233(05)72001-5. PubMed PMID: 16581371.

Matta CF, Hernández-Trujillo J, Tang T-H, Bader RFW. Hydrogen–Hydrogen Bonding: A Stabilizing Interaction in Molecules and Crystals. Chemistry – A European Journal. 2003 Feb 02;9(9):1940-51. doi: https://doi.org/10.1002/chem.200204626.

Kumar S, Khatik GL, Mittal A. In silico Molecular Docking Study to Search New SGLT2 Inhibitor based on Dioxabicyclo[3.2.1] Octane Scaffold. Curr Comput Aided Drug Des. 2020 Oct 23;16(2):145-54. doi: 10.2174/1573409914666181019165821. PubMed PMID: 30345926.

Published

30-04-2022

How to Cite

KUSWANDI, A., RUSDIN, A., TARAWAN, V. M., GOENAWAN, H., LESMANA, R., & MUCHTARIDI, M. (2022). MOLECULAR DOCKING STUDY OF THE MAJOR COMPOUNDS FROM GARCINIA ATROVIRIDIS ON HUMAN SGLT-2 PROTEIN TRANSPORT USING STRUCTURE-BASED DRUG DESIGN METHOD. International Journal of Applied Pharmaceutics, 14(4). https://doi.org/10.22159/ijap.2022v14i4.44390

Issue

Section

Original Article(s)

Most read articles by the same author(s)

1 2 > >>